New Developments in Soybean Cultivation in India

Dr. Sanjay Gupta
Principal Scientist and I/c Crop Improvement Division
ICAR- Indian Institute of Soybean Research, Indore

Global Production of Soybean (av. 2016-17 to 2018-19)

Source: AMIS-FAO
Soybean yield in major producing countries
(av. 2016-17 to 2018-19)

Source: AMIS-FAO

Comparative Global Area and Production 2018 Vs 2019 (Est)

Dr Sanjay Gupta

October 2019
Soybean: Area Confined to Central India

Concentration of soybean area in India

ICAR-Indian Institute of Soybean Research, Indore

Soybean in Central India

Area under soybean in India

Production of soybean in India

ICAR-Indian Institute of Soybean Research, Indore
Area, Production and Productivity of Soybean in India

Average Soybean Productivity in States
Sowing position of Soybean in India as on 27.09.2019
(Area in Lakh Ha)

<table>
<thead>
<tr>
<th>States</th>
<th>2019</th>
<th>Same period 2018</th>
<th>Same period 2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bihar</td>
<td>0.420</td>
<td>0.368</td>
<td>0.000</td>
</tr>
<tr>
<td>Chhattisgarh</td>
<td>0.742*</td>
<td>1.290</td>
<td>1.320</td>
</tr>
<tr>
<td>Gujarat</td>
<td>1.003*</td>
<td>1.365</td>
<td>1.290</td>
</tr>
<tr>
<td>Karnataka</td>
<td>3.302*</td>
<td>3.394</td>
<td>2.710</td>
</tr>
<tr>
<td>Madhya Pradesh</td>
<td>55.160**</td>
<td>53.180</td>
<td>50.100</td>
</tr>
<tr>
<td>Maharashtra</td>
<td>40.113*</td>
<td>40.444</td>
<td>38.397</td>
</tr>
<tr>
<td>Rajasthan</td>
<td>10.608**</td>
<td>10.461</td>
<td>9.690</td>
</tr>
<tr>
<td>Telangana</td>
<td>1.770*</td>
<td>1.789</td>
<td>1.650</td>
</tr>
<tr>
<td>Uttar Pradesh</td>
<td>0.208**</td>
<td>0.199</td>
<td>0.195</td>
</tr>
<tr>
<td>Uttarakhand</td>
<td>0.260**</td>
<td>0.240</td>
<td>0.250</td>
</tr>
<tr>
<td>Others</td>
<td>0.402**</td>
<td>0.367</td>
<td>0.319</td>
</tr>
<tr>
<td>Total</td>
<td>113.988**</td>
<td>113.097</td>
<td>105.921</td>
</tr>
</tbody>
</table>

Comparative Indian Area and Production 2018 Vs 2019 (Estimated)

<table>
<thead>
<tr>
<th>Year</th>
<th>Area ('000 Ha)</th>
<th>Production ('000 Tons)</th>
<th>Yield (Kg/Ha)</th>
<th>Change in Area (%)</th>
<th>%Change in Production</th>
<th>%Change in Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016-17</td>
<td>11.1834</td>
<td>13158.7</td>
<td>1177</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2017-18</td>
<td>10.3288</td>
<td>10933.0</td>
<td>1058</td>
<td>-7.6</td>
<td>-16.9</td>
<td>-10.1</td>
</tr>
<tr>
<td>2018-19*</td>
<td>10.9600</td>
<td>13786.0</td>
<td>1258</td>
<td>6.1</td>
<td>26.1</td>
<td>15.2</td>
</tr>
<tr>
<td>2019-20**</td>
<td>11.3990*</td>
<td>13505.0</td>
<td>1185</td>
<td>4.0</td>
<td>-2.0</td>
<td>-2.8</td>
</tr>
</tbody>
</table>

*Fourth advance estimates, ** First advance estimates,
*All India weather summary and forecast bulletin 27.09.2019 (http://agricoop.nic.in/sites/default/files/Cwwg-Data-as-on-27.09.2019.pdf)
Yield Potential and Yield Gap in Soybean

Yield potential (as per Simulation study):
- Average water non-limiting potential: 3.0 t/ha
- Average water limiting potential: 2.2 t/ha

Yield Gap:
- FLD average yield with full package: 1.8 t/ha
- National average: 1.1 t/ha
- Average yield gap: 0.7 t/ha

Low Yield of Soybean: Issues

- The majority of the crop is rainfed (95%) - weather variability
- Only two early maturing varieties (< 90 days) in Central India.
- Lack of abiotic stress (drought, heat, waterlogging) tolerant varieties of suitable maturity duration.
- Limited varieties with biotic stress (YMV, charcoal rot and anthracnose) resistance with desirable maturity group.
- Low adoption of improved crop production technology
 - Seed treatment - low adoption
 - Continuous mono-varietal culture
 - Increasing insect-pest infestation
 - Poor soil fertility and imbalanced nutrient application
- Poor availability of quality inputs at affordable prices
- Farm Implements
New Varieties for Different Zones

Six Agroclimatic Zones

- Northern Hill Zone
- Northern Plain Zone
- Eastern Zone
- North Eastern Hill Zone
- Central Zone
- Southern Zone

- 120 soybean varieties released
- 47 under seed chain
Northern Hill Zone (NHZ)

<table>
<thead>
<tr>
<th>States</th>
<th>Uttarakhand and Himachal Pradesh; J & K included in 2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main Diseases</td>
<td>Frog Eye Leaf Spot (Hot spots).</td>
</tr>
<tr>
<td>Abiotic Stress</td>
<td>Heavy rains in few years</td>
</tr>
<tr>
<td>Desirable features in varieties</td>
<td>Earliness</td>
</tr>
<tr>
<td>Additional Requirement</td>
<td>Black seeded, null-KTI, null-lox</td>
</tr>
</tbody>
</table>

![Frog Eye Leaf Spot](image)

Recent Soybean Varieties of NHZ

<table>
<thead>
<tr>
<th>Variety</th>
<th>VLS 89</th>
<th>PS 1556</th>
<th>VL Bhat 202 (Dal) (UK)</th>
<th>Shalimar Soybean (J & K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notified / Identified</td>
<td>Notified 2019</td>
<td>Under notification 2019</td>
<td>2018 (State Release)</td>
<td>2017 (under notification)</td>
</tr>
<tr>
<td>Days to Maturity</td>
<td>116</td>
<td>120</td>
<td>112</td>
<td>142</td>
</tr>
<tr>
<td>100 Seed Weight</td>
<td>14.4</td>
<td>12.5</td>
<td>16.4</td>
<td>18.5</td>
</tr>
<tr>
<td>Grain Yield (Q/ha)</td>
<td>23-25</td>
<td>23-25</td>
<td>15-17</td>
<td>22-25</td>
</tr>
<tr>
<td>Oil%</td>
<td>19.1</td>
<td>18.8</td>
<td>39.1% Protein 16.5%</td>
<td>Oil</td>
</tr>
<tr>
<td>Seed Colour</td>
<td>Yellow</td>
<td>Yellow</td>
<td>Black</td>
<td>Yellow</td>
</tr>
<tr>
<td>Resistance</td>
<td>MR to FLS</td>
<td>MR to FLS, R to YMV and SMV</td>
<td>MR to FLS, Pod Blight and Bacterial Pustules</td>
<td>-</td>
</tr>
</tbody>
</table>
Northern Plain Zone (NPZ)

- **States**: Punjab, Haryana, Delhi, UP (except Bundelkhand), Bihar
- **Main Diseases**: Yellow Mosaic Virus, Soybean Mosaic Virus, Rhizoctonia Aerial Blight
- **Abiotic Stress**: Photosensitivity
- **Desirable features in varieties**: Earliness
- **Additional Requirements**: Food Usages (null-KTI, null-lox)

Recent Soybean Varieties of NPZ

<table>
<thead>
<tr>
<th>Variety</th>
<th>SL 958</th>
<th>SL 979</th>
<th>SL 955</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notified / Identified</td>
<td>Notified 2016</td>
<td>Under notification (2019)</td>
<td></td>
</tr>
<tr>
<td>Days to Maturity</td>
<td>122-124</td>
<td>125-128</td>
<td>124-128</td>
</tr>
<tr>
<td>100 Seed Weight</td>
<td>12.3</td>
<td>11.3</td>
<td>8.77</td>
</tr>
<tr>
<td>Grain Yield (Q/ha)</td>
<td>22-25</td>
<td>22-24</td>
<td>21-23</td>
</tr>
<tr>
<td>Oil%</td>
<td>19.7</td>
<td>20.6</td>
<td>18.9</td>
</tr>
<tr>
<td>Seed Colour</td>
<td>Yellow</td>
<td>Yellow</td>
<td>Yellow</td>
</tr>
<tr>
<td>Resistance</td>
<td>Resistant to YMV, MR to RAB and SMV</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Eastern (EZ) and North Eastern Hill Zone (NEHZ)

States
- EZ: Chhatisgarh, West Bengal, Orissa,
- NEHZ: Assam, Meghalaya, Tripura, Nagaland, Manipur, Mizoram, Sikkim, Arunachal Pradesh

Main Diseases
- Bud Blight in EZ,
- Rust and collar rots in parts of NEHZ

Abiotic Stress
- Drought in EZ and
- Excess moisture in NEHZ

<table>
<thead>
<tr>
<th>Rust</th>
<th>Collar Rot</th>
<th>Bud Blight</th>
</tr>
</thead>
</table>

Recent Soybean Varieties of EZ and NEHZ

<table>
<thead>
<tr>
<th>Variety</th>
<th>RSC 10-46 (EZ)</th>
<th>KDS 753 (EZ & NEHZ, SZ)</th>
<th>MACS 1460 (EZ & NEHZ, SZ)</th>
<th>JS 97-52 (EZ & NEHZ, CZ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notified / Identified</td>
<td>Identified 2016</td>
<td>Identified 2016</td>
<td>Identified 2016</td>
<td>Notified 2008</td>
</tr>
<tr>
<td>Days to Maturity</td>
<td>100-104</td>
<td>95-97 days (EZ)</td>
<td>92-98 (EZ)</td>
<td>100-103 (NEHZ)</td>
</tr>
<tr>
<td>100 Seed Weight</td>
<td>10</td>
<td>8.4</td>
<td>10.1</td>
<td>7.8</td>
</tr>
<tr>
<td>Grain Yield (Q/ha)</td>
<td>20-22</td>
<td>18-20 (EZ)</td>
<td>21-23 (EZ)</td>
<td>15-17 (NEHZ)</td>
</tr>
<tr>
<td>Oil%</td>
<td>16.2</td>
<td>16.1</td>
<td>17.6</td>
<td>-</td>
</tr>
<tr>
<td>Resistance</td>
<td>HR to Bud Blight</td>
<td>HR to Bud Blight</td>
<td>HR to Bud Blight</td>
<td>YMV, BB</td>
</tr>
<tr>
<td>Abiotic Stress</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Tolerance to drought, heat and excess moisture</td>
</tr>
</tbody>
</table>
Central Zone

<table>
<thead>
<tr>
<th>States</th>
<th>Madhya Pradesh, Maharashtra (except western Maharashtra), Rajasthan, Gujarat</th>
</tr>
</thead>
</table>
| **Main Diseases** | • Charcoal Rot
 • Anthracnose stem and pod blight
 • YMV |
| **Abiotic Stress** | • Drought, Excess moisture
 |
| **Desirable Features in Vr** | • Early to Very Early (< 90 days) |

Charcoal Rot

- ![Charcoal Rot Image](image1.jpg)

Anthracnose

- ![Anthracnose Image](image2.jpg)

Drought and Heat

- ![Drought Image](image3.jpg)
- ![Heat Image](image4.jpg)

ICAR-Indian Institute of Soybean Research, Indore

<table>
<thead>
<tr>
<th>Irrigated</th>
<th>Not irrigated</th>
</tr>
</thead>
<tbody>
<tr>
<td>JS 97-52</td>
<td>JS 90-41</td>
</tr>
</tbody>
</table>
Recent Soybean Varieties of Central Zone

<table>
<thead>
<tr>
<th>Variety</th>
<th>JS 97-52</th>
<th>JS 20-34</th>
<th>JS 20-69</th>
<th>JS 20-98</th>
<th>JS 20-116</th>
</tr>
</thead>
<tbody>
<tr>
<td>Days to Maturity</td>
<td>102-105</td>
<td>85-88</td>
<td>98-103</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oil%</td>
<td>-</td>
<td>20.3</td>
<td>20-22</td>
<td>19.3</td>
<td>18.5</td>
</tr>
<tr>
<td>Resistance</td>
<td>HR to CR, MR to YMV</td>
<td>HR to CR, MR to YMV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tolerance to drought and heat, Waterlogging</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Southern Zone

<table>
<thead>
<tr>
<th>States</th>
<th>Karnataka, Andhra Pradesh, Telengana, Kerala, Tamil Nadu and Western Maharashtra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main Diseases</td>
<td>Rust in areas surrounding Krishna river</td>
</tr>
<tr>
<td>Abiotic Stress</td>
<td>Drought</td>
</tr>
</tbody>
</table>

Soybean Rust
Recent Soybean Varieties of Southern Zone

<table>
<thead>
<tr>
<th>Variety</th>
<th>MACS 1460</th>
<th>KDS 726</th>
<th>DSb 21</th>
<th>DSb 23</th>
<th>DSb 28</th>
</tr>
</thead>
<tbody>
<tr>
<td>Days to Maturity</td>
<td>86-88</td>
<td>88-89</td>
<td>92-95</td>
<td>93-95</td>
<td>93-95</td>
</tr>
<tr>
<td>Grain Yield (Q/ha)</td>
<td>18-20</td>
<td>23-25</td>
<td>25-30</td>
<td>20-22</td>
<td>21-23</td>
</tr>
<tr>
<td>Oil%</td>
<td>18.9</td>
<td>18.4</td>
<td>18.2</td>
<td>18.6</td>
<td>20.1</td>
</tr>
<tr>
<td>Resistance</td>
<td>MR to Rust</td>
<td>HR to Rust</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Breeder Seed Production

Breeder Seed Production: 17000 Q

- **JS 20-34**: 18%
- **JS-335**: 14%
- **JS 95-60**: 7%
- **JS 93-05**: 8%
- **JS 20-98**: 8%
- **JS 20-69**: 9%
- **JS 20-29**: 11%
- **Others**: 25%
Soybean for Food Usage

- 40% Protein and 20% Oil.
- Three limiting factors for soybean food usage
 – Presence of Trypsin Inhibitor
 – Presence of beany flavour in soy milk
 – Poor shelf life of soybean oil

Varieties with null-Kunitz Trypsin Inhibitor (KTI)

- KTI Binds with trypsin in intestine and results in poor protein digestion.
- Long term use may cause liver damage.
- Wet boiling inactivates it. Requires additional inputs.
- KTI-free lines NRC 101 and NRC 102 developed commercialized. (Ruchi and ITC)
- **Varietal conversion**: JS 97-52 (NRC 127), NRC 7, MACS 450, JS 93-05
- NRC 127, the first null-KTI variety released in 2018.
Varieties with Reduced Beany Flavor

- During processing Lipoxgenase Enzyme (Lox) reacts with PUFA and produce grassy and beany flavor.
- Wet heat inactivation: Cost and Protein insolublity.
- Varietal conversion: JS 97-52 (NRC 127), NRC 7, MACS 450, JS 93-05
- **Null lox varieties would be released in 2020.**
- Varieties combining null KTI and reduced beany flavour would be released in 2021

Varieties with High Oil Shelf Life

- Oxidation of poly unsaturated fatty acids (PUFA)

<table>
<thead>
<tr>
<th>Fatty Acid</th>
<th>Mono-unsaturated</th>
<th>PUFA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oleic Acid</td>
<td>22%</td>
<td></td>
</tr>
<tr>
<td>Linoleic Acid</td>
<td>55%</td>
<td>7%</td>
</tr>
<tr>
<td>Linolenic Acid</td>
<td>7%</td>
<td></td>
</tr>
</tbody>
</table>

- Requirement for high oleic soybean
- Varieties with 80% oleic acid developed in world
- **Mid Oleic variety developed in IISR would be released in 2020.**
- Breeding lines up to 60% oleic acid developed in IISR Indore
- High Oleic variety would be developed 2022.
Vegetable Soybean

- Immature Seed shelled from the pods picked at R6 stage of reproductive phase when 80-90% of the pod cavity is filled and the seeds and pods still green.
- Nutritious (vitamins, minerals) like green pea, chick pea, french bean.

Vegetable Soybean Characters

- Sweet in taste (about 8% sucrose at R6 stage)
- Large seed size (about 50g) at picking
- Mild beany flavour
- No flatulence factors (raffinose & stachyose)
- Quick-to-cook
- Protein 10%; Fat 3% on fresh weight basis
NRC 105 and Karune: Vegetable Soybean

- Trials initiated in AICRP in 2018
- NRC 105 and Karune promising entries
- Days to R6: 65-70 days
- 100 green seed weight: 60 (NRC 105) & 75 (Karune)
- Sucrose: 6.5 (Karune) amd 8.0 (NRC 105)
- Green Pod Yield: 8-10 t/ha
- Green seed yield: 4-5 t/ha

Enhancing soybean yield - Sowing and Seed rate

- Suitable production technologies developed and continuously fine tuned:
 - Optimum plating time (15th June to 5th July); Increase seed rate in delayed sowing.
 - Optimum seed rate (60-65; 65-70; 70-75 kg/ha)
 - Optimum soil moisture (at least 100 to 120 mm rains)
 - Optimum sowing depth (2-3 cm)
Seed Quality Management

- **Seed polymer coating for better emergence, growth and protection**
 - Micronutrients (Mo, B),
 - biocontrol agents (Trichoderma),
 - fungicides (carboxin, thiram)
 - insecticides (Thiomethoxam)

- **Foliar salicylic acid application**
 - Increased seed yield, resistance to foliar diseases and better shelf life.

- **High seed coat lignin lines identified**
 - Lee, MACS 450, MAUS 47, VL Soya 1, PS 1042, JS 97-52

Soybean for Mechanical Harvesting

- **X-radiography**
 - gap between seed coat and cotyledons, and the position of radicle over the cotyledons varies among varieties

- **Compact seed coat over the cotyledons reduces the risk of cracking**

- **Position of radicle is raised more over the cotyledons, the chances of damage to radicle is more**
Varietal Cafeteria Approach at IISR-Indore

Varietal Cafeteria at Farmer’s Field (2019)
Enhancing Soybean Yield - Water Management

- Planting on Broad-bed furrows (BBF) and Ridge-Furrow system: 20% yield enhancement
- BBF seed drill (i) creates broad beds and (2) plants the soybean developed
- Provides effective drainage under high rainfall

Micro irrigation: Technology for Future in Soybean

- 16 m ha under micro-irrigation in USA. Mainly Sprinkler and Drip.
 - 17% of micro-irrigation area by Sub-surface.
 - Shift towards sub-surface: 0.2 m, 0.4 m, 0.6 m depth.
 - Last Up to 20 years.

- Researchable issues:
 - Row distance
 - Weed management: drip lines etc
Enhancing Soybean Yield - System Approach

Soybean fits well in all traditional cropping systems.

Irrigated conditions:
(i) Soybean-wheat
(ii) Soybean-potato/Garlic/Onion-wheat

Unirrigated/Limited irrigation:
(i) Soybean-Chickpea

Soybean-based intercropping:
Soybean + Pigeonpea, Soybean + sorghum (unirrigated),
Soybean + Maize/Cotton/Sugarcane etc. (Irrigated)

Intercrop seed drill for planting of soybean with intercrops has been developed, demonstrated and validated.

Crop Residue Management: Technology Under Development

- Mulching with crop residues contribute to the conservation of soil and rainwater
- This method reduces evaporative losses, runoff from cropped fields
- Crop residues modify soil biological activity resulting in improved soil fertility and better soil physical conditions.
Site Specific Nutrient Management: Technology under Development

- We are developing Decision Support System for working out site specific nutrient requirement for soybean in collaboration with IPNI

- Addressing nutrient deficiencies which exist within field and making adjustment in nutrient application to match these locations or soil differences

Enhancing soybean yield- pest and disease management

- Insects like Stem fly, Girdle beetle, tobacco caterpillar (*Spodoptera litura*) and Bihar hairy caterpillar are causing substantial yield losses.

- Diseases like Yellow mosaic, Charcoal rot, Anthracnose, Pod Blight, Collar rot, Rust etc. too are affecting the productivity potential of the soybean crop

- For them regular scouting is required so that immediate action can be taken

- Integrated insects and disease management which include use of variety, bio-control and chemicals has been recommended
Enhancing the soybean production - mechanisation

- Soybean is a short season crop
- It provides a limited window for most of the agronomic practices that include planting time, management of weeds, control of insects and pests and harvesting
- The mechanization of agricultural operations can help in timely interventions and operations for harnessing potential productivity of the crop

- Subsoiler
- Seed cum fertilizer drills
- BBF/FIRBS seed drill
- Sweep seed drill
- Ridge fertilizer drill cum seed planter
- Intercrop seed drill

Thank you very much